Données Générales | ||||
---|---|---|---|---|
Programme Académique | General Engineering Program | Responsable(s) Module :
GAGNEUX Antoine |
||
Type d'EC : Cours | Introduction To Data Science (LIIAem08EData) | |||
Cours : 8h00 Projet : 8h00 Travail personnel : 8h00 Durée totale: 24h00 |
Status
|
Periode
Academic Semester |
Langue d'enseignement :
French |
Objectifs Généraux |
---|
The theme of the DATA course in digital coloring is machine learning. The goal is to understand the issues and initial concepts of machine learning. Skills: - Understand conceptual definitions - Understand mathematical definitions - Implement these definitions on simple examples - Implement on a complex example - Analyze the results and suggest improvements - Team working |
Contenu |
---|
The course plan is as follows: - Linear regression and Gradient Descent - Logistic regression - Data: learning base vs test base - Over and under learning - Meta parameters - Perceptron - Neural networks The course will be enhanced with many exercises. The second part of the course is carried out in the form of a project whose objective is to implement the concepts seen in the first part. It is about carrying out a machine learning process on a real basis and studying the avenues for improvement. |
Prérequis |
---|
- Basics of algorithms. - Python basics |
Bibliographie |
---|
Machine Learning course - Andrew Ng - Coursera - Stanford - 2021. Online : https://fr.coursera.org/learn/machine-learning Vidéos 3Blue1Brown series - Saison 3 - 2021 : Online ; https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi Deep Learning With Python, François Chollet, Edition Manning, 2022 |
Évaluation(s) | |||
---|---|---|---|
N° | Nature | Coefficient | Objectifs |
1 | 1 | Project | |
2 | 1 | Continuous Assessment |