Incoming Exchange Student Courses
Unité d'Enseignement Crédits (ECTS) Unité de Cours Contenu Nb d’Heures
Multidisciplinary Project S6 3 Ecodesign Project Part 2 - Environment

The project contains 3 expected content types: courses & tutorials, project sessions (labs), and personal work.
For each semester, this projects represents ~40h of work on-site + 20h-30h of personal work. The total workload for each semester is estimated to 60- 70h/student.

Content of semester 6:
1. Courses & tutorials: Ecodesign approaches and strategies.
- Courses topics: Ecodesign regulations & strategies, Materials & environment, Design for Sustainable behaviour, Thermal insulation & downsizing, Ecodesign of packaging, design for End-of-life, Innovation for ecodesign.
- Tutorials: CES EduPack (choice of materials), Simapro, CREO (CAD modelling)
2. Project sessions (labs) supervised by the teacher: Developing 3 levels of ecodesigned solutions
- Solutions developments: calculations, CAD modelling, LCA modelling of the 3 levels
3. Personal work: information search, interpretation of LCA results.

TD : 4h00
Cours : 3h00
Projet : 8h00
Ecodesign Project Part 2 - Technical

The project contains 3 expected content types: courses & tutorials, project sessions (labs), and personal work.
For each semester, this projects represents ~40h of work on-site + 20h-30h of personal work. The total workload for each semester is estimated to 60- 70h/student.

Content of semester 6:
1. Courses & tutorials: Ecodesign approaches and strategies.
- Courses topics: Ecodesign regulations & strategies, Materials & environment, Design for Sustainable behaviour, Thermal insulation & downsizing, Ecodesign of packaging, design for End-of-life, Innovation for ecodesign.
- Tutorials: CES EduPack (choice of materials), Simapro, CREO (CAD modelling)
2. Project sessions (labs) supervised by the teacher: Developing 3 levels of ecodesigned solutions
- Solutions developments: calculations, CAD modelling, LCA modelling of the 3 levels
3. Personal work: information search, interpretation of LCA results.

TD : 2h00
Cours : 3h00
Projet : 8h00
Semester Project Semester Project

Choice of topic: Students select a project topic in agreement with their supervisor. The topic can be technical (such as developing an application, data analysis, etc.).

Implementation: Execution of the project according to the established plan, with possible adjustments based on needs and unforeseen circumstances.

Write-up: Compilation of results, analysis, and conclusions into a written document.

Preparation for the defense: Preparation of a structured and convincing oral presentation.

TD : 20h00
Projet : 130h00
Control Engineering S6 6 Introduction To Control Theory

1. Introduction to continuous Linear Time-Invariant (LTI) systems
2. Mathematical models of LTI systems
3. Block diagram and the reduction rules
4. Time-domain analysis of a first order system
5. Time domain analysis of a second order system
6. PID controllers for TLI systems

TD : 10h00
TP : 8h00
Cours : 14h00
Power Electronics

This course introduces a comprehensive overview of different power electronics components and applications. It presents the basics of devices, their characteristics, their principle of operation, and their range of applications as well. The course also underlines the principle of operation of converters used in DC drives (diodes rectifiers, controlled rectifiers and choppers). It discusses the principle of harmonics, performance parameters and filtering techniques. Furthermore, upon completion of this course, the student will be able to outline the characteristics and operation principle of power AC drives (inverters and AC-AC controllers). Mainly full bridge and three phase circuits are highlighted. The effect of inductive loads and protection schemes are discussed as well. The student will understand and be able to describe switching techniques and conduct both performance and harmonical studies. The student will be able to demonstrate a certain familiarity with the various configurations and applications and to develop models and simulations.

o Introduction & Basics in Power Electronics: Purpose, History &Application, Devices & Circuits Characteristics, Ideal and Practical device, Semi-conductors basics
o Conversion Basics & Diodes Rectifiers : Conversion Circuits Types, Switching Sequence & Methodology, Protection, Performance Parameters, FW SP Diode Rectifier, FW 3P Diode Rectifier
o Controlled Rectifiers & DC/DC converters: FW SP Controlled Rectifier, FW 3P Controlled Rectifier,
o Introduction to DC-DC drives: Buck Converter, Boost Converter, Buck Regulator, Other topologies
o DC/AC Conversion: Introduction to AC Drives, SP Full Bridge Inverter, 3P Full Bridge Inverter
o AC-AC Conversion: R Load

TD : 6h00
TP : 8h00
Cours : 10h00
Mathematics For Engineering S6 6 Mathematics For Engineers

Introduction to statistics and probability - Graphical Tools to represent data
Meaningful Values
Probability Theory
Common Discrete and Continuous Probability Distributions
Convergence Theorems
Sampling
Estimations and Confidence intervals
Statistical Tests
Comparison of Normal Distributions
Normality Assumption checking
Homogeneity of a population: ANOVA
Chi-Square test
Correlation and linear regression

TD : 16h00
Cours : 16h00
Object-Oriented Programming

Basics of Java
Introduction to Object Oriented Programming
Classes and Methods
Inheritance
Standard Library of Java

TD : 4h00
TP : 12h00
Cours : 6h00
Projet : 8h00
Society, Management & EntrepreneurshIP 6 4 French As à Foreign Language

TP : 21h00
Global Affairs

Cours : 4h00
Projet : 10h00
Principles Of Marketing

As future engineers, Students need to understand the way a company works and how they shall collaborate with different functions.
Marketing is a key department in a company, interacting with almost all departments, especially with the R&D and Manufacturing functions.
This course is aiming at providing students with a global overview of what Marketing is and how Marketing function is interacting with other departments inside a company.

Students will discover the major definitions and tools taught in Marketing.
The course will be composed of Lectures and Tutorials.
Students will have the opportunity to review and check their understanding of the content as well as their level of knowledge
Students will have the opportunity to test and learn how to use Marketing tools during the Tutorials thanks to Group Work activities
Eventually they willbe able to implement these learning during the Innovation program that they will go throught during their 4th year

Cours : 6h00
Projet : 8h00
Sustainable Energy & Environmental Engineering S6 8 Advanced Heat Transfer

-Steady Heat conduction : heat transfer in common configuration, conduction shape factors.
- Transient conduction : lumped system analysis, Biot number, transient heat conduction in large plane walls, long cylinders, and spheres with spatial effects, transient heat conduction in semi-infinite solids.
- Numerical methods in heat conduction : finite difference formulation of differential equations, two-dimensional steady heat conduction.
- Natural convection : physical mechanisms, equation of motion and the grashof number, natural convection over surfaces, natural convection inside enclosures, combined natural and forced convection.
- Boiling and condensation : boiling heat transfer, pool Boiling, flow boiling, condensation heat transfer, film condensation, dropwise condensation
- Heat exchangers : heat exchanger types, overall heat transfer coefficient, the log mean temperature difference, the effectiveness-NTU method, heat exchanger design and performance calculations.
- Radiation heat transfer : the view factor, view factor relations, black surfaces, diffuse and gray surfaces, radiation shields and the radiation effect.

TD : 12h00
TP : 12h00
Cours : 12h00
Heating Ventilation et Air Conditioning Hvac

The purpose of this course is to deeply understand Heat, Ventilation and Air Conditioning technologies and their importance in the building and industry sectors (buildings energy consumption, thermal comfort, ...) and to manage to size and optimize and HVAC system. The course addresses also the future of the HVAC&R industry (EU F-Gas regulation, use of new refrigerant fluids, improvement of energy efficiencies, etc.).
course content (10h of lectures + 10h of tutorials )
• Introduction to HVAC (Importance of HVAC processes in our current society, cold production, cold chain management, energy consumption, environmental consequences) and classic mechanical refrigeration
• Different Refrigeration technologies, and their performance (specificities and comparison)
• Heat pumps specificities and performance (different heating technologies)
• Humid air: Psychrometrics and thermodynamics of moist air.
• Air Handling Units for air conditioning (components and technology evolution)
Labs: (12h)
Study of a volumetric compressor of a refrigerating machine
Study of a refrigeration machine with a water secondary circuit
Study of an Air Handling Unit with a recycling option

TD : 10h00
TP : 12h00
Cours : 10h00
Hydraulics

- Hydraulic networks: fundamentals of fluid flow in pipes, major and minor and head loss, system head, branches in parallel and series.
- Pumping systems: classification of pumps, operation of dynamic pumps, pump main parameters, pump performance curves, pumps combined in series and parallel, matching a pump to a piping system, cavitation and net positive-suction head, dimensionless pump performance, similarity rules, specific speed, adaptation of operating conditions.
- Hydraulic power systems: Fundamentals of Hydraulic Power Transmission, hydraulic power generation, positive displacement pumps (design and performance), hydraulic power distribution (hydraulic valves: types, design and function), hydraulic power deployment (hydraulic cylinders, hydraulic motors, hydrostatic transmission), hydraulic circuits.

TD : 10h00
Cours : 10h00
Systems Engineering S6 3 Quality

Introduction to Quality, its history and evolution.
Learn about quality management with the main tools related to it.
Analysis and understanding of the ISO 9001 standard, its purpose, context and stakes.
Audit: Preparing and conducting an Audit.
QRQC : Operational method of quality management and problem solving. Discovery and appropriation of A3 and Kanban communication tools.
Experience plan: Initiation to the PEX tool, mathematical approach and method.

TD : 10h00
Cours : 8h00
Vibrations

The course resumes the basics of vibration analysis.
At first the vibration analysis and its matrix formalism is presented and applied at two degrees of freedom systems.
Then, damping and vibration isolation is presented.
Exercises are done after each notion to put into practice formula and method introduced in the course.

TD : 4h00
TP : 4h00
Cours : 12h00