ECAM LaSalle Mechanical and Electrical Engineering Programme
Données Générales
Programme Académique ECAM LaSalle Mechanical and Electrical Engineering Programme Responsable(s) Module :
BARILLON Cristelle
Type d'EC : Cours Mathematics For Engineers 8 (LIIEEng04EMathEng8)
TD : 60h00
Cours : 30h00
Travail personnel : 72h00
Durée totale: 162h00
Status
Periode
Semester 4
Langue d'enseignement :
English
Objectifs Généraux
This course will focus on extending calculus and algebra topics from previous semesters, in order to acquire or consolidate the theoretical mathematical tools of the engineer.

Students will :
- (outcome C1) learn how to study and interpret improper integrals
- (outcome C2) learn how to study and interpret power series, use them to solve a broad range of calculus problems
- (outcome C3) be able to solve differential systems of ODE and consolidate their knowledge of ODE techniques

- (outcome LA1) extend Semester 3 linear (matrix) Algebra to general vector spaces and linear maps
- (outcome LA2) be able to qualify linear isometries, in particular in R^2 and R^3
- (outcome LA3) Have a general understanding of some Linear Algebra application (eg image processing)
Contenu

1 - Improper integrals
2 - Power series
3 - Vector space and linear map
4 - Pre-Hilbert space
5 - Systems of differential equations
6 - Orthogonal transformation - Linear isometry
7- Spectral theorem and SVD



Prérequis
EENG Mathematics for Engineers 1,2 and 3, in particular:
- matrix algebra
- infinite series
- Riemann definite and indefinite integral
Bibliographie
Course lecture notes
Strang, Gilbert. Introduction to Linear Algebra. 5th ed. Wellesley-Cambridge Press, 2016.
N. Piskunov: Differential and integral calculus Volume 1 and 2, Mir, Moscow 1969
Évaluation(s)
Nature Coefficient Objectifs
1 C1, C2 and LA1
0,25 Midterm 1
2 Continuous Assessment 0,20 may contain quizzes and projects
3 Written or oral exam 0,30 final exam for evaluation of the whole semester, in particular:
C3 - LA2 - LA3
4 Written exam 0,25 Midterm 2