ECAM LaSalle Mechanical and Electrical Engineering Programme
Données Générales
Programme Académique ECAM LaSalle Mechanical and Electrical Engineering Programme Responsable(s) Module :
AHMAD Hafiz Muhammad,CAILLE Vincent
Type d'EC : Cours Hydrogen Technologies (LIIEEng07EHydogenTech)
TD : 4h00
TP : 4h00
Cours : 6h00
Durée totale: 14h00
Status
Periode
Semester 7
Langue d'enseignement :
Objectifs Généraux
• Gain extensive knowledge of hydrogen production, transport and distribution, storage,
and utilization methods.
• Understand the physico-chemical behavior of hydrogen.
• Be able to design a hydrogen storage unit.
• Describe how electrochemical properties and material transfer phenomena are reflected
in the characteristics of fuel cells.
• Understand the physico-chemical phenomena that enable a fuel cell to function.
• Acquire a broad knowledge of fuel cell technologies.
• Know how to assess their energy performance (efficiency, effectiveness).
• Be able to interpret the information contained in the current-voltage characteristic of a
fuel cell.
• Be capable of sizing a fuel cell stack for a given application.
• Be able to determine the necessary specifications for auxiliary fuel and oxidant supply
systems.
Contenu
1. Introduction to Hydrogen Technologies: Production, Storage, and Transport of Hydrogen (2H)
a. Physico-chemical properties of hydrogen.
b. Green, grey, yellow, and blue hydrogen.
c. Hydrogen production through natural gas reforming.
d. Hydrogen production through water electrolysis.
e. High-pressure gaseous hydrogen storage.
f. Low-temperature liquid hydrogen storage.
g. Metal hydride-based solid hydrogen storage.
h. Hydrogen transport: Compressed gas cylinders/cryogenic liquid tanks, pipelines (gas pipelines, hydrogen pipelines, etc.).
2. Fuel Cells: Introduction to Different Technologies (2H) (2H)
a. History of the fuel cell.
b. Operating principle of a fuel cell.
c. Different types of fuel cell.
3. Proton Exchange Membrane Fuel Cell (PEMFC) (2H)
a. History.
b. Chemical reaction.
c. Fuel cell stack.
d. Operation.
e. Degradation mechanisms.
f. Design of the Membrane Electrode Assembly (MEA).
g. PEMFC system: Fluidic architecture, thermal management, and power interface.
4. Tutorials (4H)
a. Sizing a PEMFC stack with hydrogen storage
5. Lab : Characterization of a PEMFC (4H)
a. Establish the characteristic curve of a PEMFC.
Prérequis
Fundamentals of Thermodynamics.
Bibliographie
[1]: S.A. Sherif, D. Yogi Goswami, E.K. (Lee) Stefanakos, Aldo Steinfeld, Handbook of Hydrogen Energy, Routledge & CRC Press 2014.
[2] L.J.M.J. Blomen, M.N. Mugerwa, eds., Fuel Cell Systems, Springer US, 1993. https://doi.org/10.1007/978-1-4899-2424-7.
[3] P. Stevens, F. Novel-Cattin, A. Hammou, C. Lamy et M. Cassir, "Piles à combustible", Techniques de l'Ingénieur, D3340, 2000.
[4] Fuel Cells and Hydrogen - 1st Edition, (n.d.). https://www.elsevier.com/books/fuel-cells-andhydrogen/hacker/978-0-12-811459-9 (accessed November 25, 2021).
[5] Méziane Boudellal. La pile à combustible - 2e éd.: L'hydrogène et ses applications. Dunod 2002
[6] T.S. Zhao, K.-D. Kreuer, Trung Van Nguyen. Advances in Fuel Cells. Elsevier 2007
[7] Bilal Abderezzak. Introduction aux phénomènes de transferts dans la pile à combustible PEMFC. ISTE editions 2018